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1. Introducción y objetivos

1.1. Objetivos

En este trabajo se ha llevado a cabo un análisis de la política española desde la pers-
pectiva de la sociofísica destacando tres objetivos principales. En primer lugar, evaluar la
idoneidad de este ámbito como objeto de estudio sociofísico. En segundo lugar, comprobar
la hipótesis de que el sistema electoral español es un sistema con memoria, haciendo uso
de modelos de Markov. En tercer lugar, proponer y analizar un modelo físico capaz de
reproducir la dinámica electoral y ajustarlo a los datos reales disponibles.

1.2. Introducción

La sociofísica es un campo de estudio que, a primera vista, puede parecer poco conven-
cional: propone utilizar herramientas de la física estadística para comprender y analizar
fenómenos sociales y políticos. Aunque la idea de comparar átomos con personas suene
atrevida, en realidad se basa en una observación sencilla: en diversos contextos (elecciones,
difusión de noticias, comportamientos de consumo, etc), los individuos muestran patrones
colectivos que, al menos en cierta medida, pueden describirse mediante modelos similares
a los que se emplean en la física de la materia condensada.

Por supuesto, el comportamiento humano es infinitamente más rico y matizado que
el de un conjunto de partículas. Sin embargo, es precisamente esa riqueza la que hace
que, a menudo, sea imposible abarcarlo todo si no se eligen cuidadosamente algunos
rasgos esenciales. En la sociofísica, se opta por simplificar, no para ignorar la complejidad
humana, sino para ver si existen regularidades que emerjan incluso cuando se toman en
cuenta unas pocas variables clave (por ejemplo, la influencia de la opinión de los demás o
la experiencia previa de cada individuo).

Al igual que en la física se usan modelos teóricos y simulaciones por ordenador para
reproducir fenómenos naturales, en sociofísica se realizan experimentos virtuales: se dise-
ña un conjunto de agentes (personas ficticias con ciertas reglas de comportamiento), se
deja que interactúen según determinadas condiciones, y luego se comparan los resultados
con datos reales. Si el modelo capta rasgos importantes de la realidad, se pueden hacer
predicciones razonables sobre procesos como la formación de consenso, la aparición de
polarizaciones o el impacto de la memoria histórica en la evolución de la intención de
voto.

Esta aproximación no pretende describir con detalle toda la complejidad de la con-
ducta humana; es imposible encajar en una simulación cada matiz cultural, psicológico
y económico. Pero tampoco hace falta: la clave de la física estadística está precisamente
en buscar patrones globales que se mantienen estables cuando aumentan las interaccio-
nes entre los agentes. A menudo, estos patrones pueden resultar sorprendentes o incluso
contradictorios con la intuición. Sin embargo, ayudan a explicar por qué ciertos compor-
tamientos colectivos persisten a lo largo del tiempo o por qué se propagan rápidamente
algunas creencias o tendencias.
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Así, la sociofísica brinda un punto de vista refrescante y hasta cierto punto provocativo:
¿podemos aprender algo valioso sobre la organización social humana observando sistemas
físicos relativamente simples? Sus defensores argumentan que al igual que la aparente
sencillez de los átomos y moléculas no les impide generar estructuras complejas y tampoco
impide a los físicos extraer leyes universales, la sociedad podría regirse en parte por
mecanismos reconocibles, y es justo ahí donde la sociofísica realiza su aportación.

Por supuesto, este enfoque puede encontrar escepticismo en otros ámbitos, ya que im-
plica adoptar una perspectiva cuantitativa y reduccionista para estudiar algo tan difícil
de medir como el comportamiento humano. No obstante, en la búsqueda de comprensión
de fenómenos tan variados como la difusión de la desinformación o el auge de determina-
dos movimientos políticos, las ideas y métodos de la física estadística ofrecen intuiciones
valiosas.

A continuación, se repasa el recorrido histórico de la sociofísica: desde sus primeras
tentativas—cuando apenas se intuía la utilidad de este cruce disciplinar—hasta los mode-
los más avanzados de hoy. Con ello, se pretende mostrar cómo ha ido consolidándose esta
disciplina y por qué ofrece un marco prometedor para estudiar aspectos esenciales de la
política española.

1.3. Historia de la sociofísica

La sociofísica parte de la idea de que los mismos métodos y conceptos que se usan
en física estadística también pueden ayudar a entender fenómenos sociales y políticos.
Aunque hoy en día sus aplicaciones resultan cada vez más visibles y aceptadas, el camino
hasta aquí no ha sido sencillo. Desde los años setenta, esta disciplina ha tenido que abrirse
paso enfrentando críticas y dudas sobre su validez académica.

A mediados de la década de 1970, la física de la materia condensada vivía momentos
de gran efervescencia gracias a investigadores como Kenneth G. Wilson, quien introdujo
la idea de los grupos de renormalización para explicar cómo pequeñas interacciones locales
pueden generar cambios radicales en sistemas más grandes. Inspirado por este enfoque,
el físico Serge Galam comenzó a preguntarse si dichas herramientas podrían emplearse
también para analizar la dinámica colectiva de las sociedades humanas. Sin embargo,
no todo el mundo recibió esta propuesta con agrado. Durante los setenta y ochenta, la
mayoría de la comunidad científica consideraba que aplicar fórmulas y teorías creadas para
átomos o partículas a las personas era un atrevimiento excesivo. Para muchos, los seres
humanos y sus complejas interacciones sociales no podían entenderse empleando métodos
tan fríos o mecánicos como los de la física.

En 1982, Galam y su equipo crearon el primer modelo sociofísico [1], inspirado en
el famoso modelo de Ising (habitualmente usado para estudiar transiciones de fase en
física). Este trabajo demostró cómo interacciones locales y factores externos pueden con-
ducir a decisiones colectivas, como las huelgas. Aunque en ese momento pasó bastante
desapercibido, hoy se considera un texto fundamental en la historia de la sociofísica. Pese
al escepticismo inicial, Galam y otros entusiastas siguieron desarrollando modelos y pu-
blicando sus resultados tanto en revistas de física como en algunas de ciencias sociales,
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analizando la propagación de opiniones, la formación de consensos [2] e incluso el com-
portamiento electoral [3]. Estos esfuerzos dieron forma a la base teórica de la sociofísica,
aunque todavía faltaba un largo camino para que fuera tomada en serio por la mayoría
de los académicos.

Hacia la mitad de la década de 1990, la idea de aplicar métodos de la física a otras
áreas ganó popularidad gracias a la llamada econofísica [4], una rama que se centra en el
estudio de los mercados financieros con herramientas de física estadística. Esto sirvió de
respaldo indirecto a la sociofísica y atrajo a nuevos investigadores al campo. Como resul-
tado, la cantidad de publicaciones comenzó a aumentar y se formaron grupos de trabajo
dedicados específicamente a estos temas. Con el paso del tiempo, la sociofísica empezó
a ser vista por algunos como un puente entre la física y las ciencias sociales, ofreciendo
formas novedosas de estudiar el comportamiento de grandes grupos humanos. Galam,
tras haber luchado prácticamente en solitario durante años, vio cómo se multiplicaban los
trabajos que seguían su línea de pensamiento.

En la actualidad, la sociofísica ha avanzado lo suficiente como para contar con una
posición propia dentro de la investigación sobre política, economía y dinámicas sociales.
Serge Galam, en sus escritos más recientes, insiste en la importancia de la rigurosidad
metodológica para evitar malas interpretaciones o abusos de conceptos físicos en contextos
sociales. Su mensaje es claro: la sociofísica puede aportar enfoques valiosos, siempre y
cuando se utilice con cuidado y se mantenga un diálogo abierto con otras disciplinas.
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2. Marco Teórico

Se procede a realizar un análisis teórico de los modelos empleados en esta investigación.
En primer lugar, se analiza el modelo de Ising y su aplicación a la sociofísica: el modelo
de Sznajd. Después, se explica el modelo de Markov, su desarrollo matemático y sus
aplicaciones más comunes para contextualizarlo y mostrar su utilidad en este trabajo.

2.1. Modelo de Ising

El modelo de Ising [5] (conocido también como modelo de Lenz-Ising), llamado así
en honor a los físicos Ernst Ising y Wilhelm Lenz, es un modelo matemático usado para
explicar el ferromagnetismo en el campo de la mecánica estadística. En este modelo se
utilizan valores discretos para representar los momentos dipolares magnéticos de spins
atómicos, cada uno de los cuales puede tomar solo dos estados diferentes(+1 o -1). Estas
partículas se organizan en una estructura específica y generalmente en una disposición
periódica. Cuando las partículas magnéticas adyacentes están alineadas (coinciden en su
orientación), la energía del sistema es menor que cuando están desalineadas; sin embargo,
esta tendencia natural de minimizar la energía se ve afectada por el calor presente en el
sistema y esto provoca la aparición de diferentes configuraciones estructurales. Este plan-
teamiento ayuda a identificar transiciones de fase como una representación simplificada de
los fenómenos reales. Es importante señalar que el modelo de Ising en dos dimensiones en
una red cuadrada es uno de los sistemas estadísticos más simples que muestra un cambio
de fase.

El físico Wilhelm Lenz creó este modelo en 1920 y le planteó como desafío a su alumno
Ernst Ising quien logró resolver el problema unidimensional (1925) basándose en su tesis
de 1924.[2] En la versión unidimensional no se observan cambios de fase evidentes; por
el contrario, en la variante bidimensional en una red cuadrada resultó ser mucho más
complicada y solo fue analizada de manera detallada posteriormente por Lars Onsager en
1944.

Pensemos en un conjunto de posiciones en una red donde cada posición tiene cone-
xiones adyacentes formando una red de múltiples dimensiones. En cada posición de esta
red se establece una variable discreta σk que puede adoptar uno de los dos valores dis-
ponibles (−1 o +1) para representar el spin de dicha posición. Una disposición de spins,
σ = {σk}k∈Λ, es una asignación de valores de spin a cada posición de la red.

Para dos posiciones vecinas i y j en una red conectada entre sí existe una relación
mutua representada por una interacción Jij entre ellos. Además, cada posición j en la
red se ve afectada por un campo magnético externo hj que interactúa directamente sobre
la posición en cuestión. Los niveles energéticos asociados a una configuración específi-
ca se definen a través de una función particular, el Hamiltoniano, que varía según las
interacciones entre los espines adyacentes y la influencia del campo magnético externo:

H(σ) = −
∑
⟨i,j⟩

Jijσiσj − µ
∑
j

hjσj.
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La probabilidad de que el sistema esté una configuración particular, en función de la
temperatura inversa β = 1

kBT
, viene determinada por una distribución estadística especí-

fica, la distribución de Boltzmann:

Pβ(σ) =
e−βH(σ)

Zβ

,

donde Zβ, la función de partición, es un factor de normalización que garantiza que las
probabilidades estén equilibradas de manera adecuada:

Zβ =
∑
σ

e−βH(σ).

Además, en relación con cualquier propiedad asociada al spin f(σ), que puede ser
considerada como una característica observada del sistema, se establece un valor esperado
que refleja su promedio ponderado de acuerdo con las probabilidades de las posibles
configuraciones:

⟨f⟩β =
∑
σ

f(σ)Pβ(σ).

Estas probabilidades Pβ(σ) indican la probabilidad de que, en un estado de equilibrio
establecido, el sistema se encuentre en determinada condición.

La convención común es emplear un signo negativo en cada término de la función que
representa la energía en los modelos físicos para distinguir entre interacciones ferromagné-
ticas y antiferromagnéticas, basándose en el signo del término de interacción entre pares:
positivo para la primera (Jij > 0) y negativo para la segunda (Jij < 0). Cuando no hay
interacción entre los espines (Jij = 0), se consideran independientes unos de otros.

En un sistema de material ferromagnético, los spins suelen orientarse en la misma
dirección; es más probable que los spins adyacentes compartan el mismo sentido (σi = σj).
Por otro lado, en un modelo antiferromagnético, los spins adyacentes tienen preferencia
por tener sentidos opuestos (σi ̸= σj).

La convención sobre signos también establece cómo un espín en un punto interactúa
con un campo magnético exterior. Dependiendo del sentido y la intensidad del campo
(hj), el espín tiende a alinearse en la misma dirección (hj > 0), en dirección contraria
(hj < 0) o no se ve afectado si no hay campo presente (hj = 0).

Transiciones de fase

En su tesis doctoral de 1924, Ising resolvió el modelo para el caso de una dimensión,
que puede entenderse como una red lineal en la que cada punto interactúa únicamente con
sus vecinos inmediatos, a la izquierda y a la derecha. En una dimensión, la solución no
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muestra transición de fase. En esta situación, las correlaciones entre los spins disminuyen
exponencialmente conforme aumentan las distancias entre ellos:

⟨σiσj⟩β ≤ C exp(−c(β)|i− j|),

manteniendo así el sistema desordenado. A partir de este hallazgo, Ising concluyó erró-
neamente que este modelo no presentaba transiciones de fase en ninguna dimensión.

El modelo de Ising muestra un cambio de fase entre un estado ordenado y uno des-
ordenado cuando se examina en dos o más dimensiones. Específicamente, el sistema está
en un estado caótico para valores bajos de β, mientras que manifiesta una estructura
ferromagnética ordenada para valores altos:

⟨σiσj⟩β ≥ c(β) > 0.

Este fenómeno fue inicialmente evidenciado por Rudolf Peierls en 1936 mediante una
técnica conocida como el razonamiento de Peierls.

2.1.1. Aplicaciones clásicas

La razón principal detrás de la creación del modelo fue el fenómeno del magnetismo
ferroso. El hierro tiene propiedades magnéticas y, una vez se magnetiza, conservará esa
característica durante un período considerablemente más largo que el de los tiempos
atómicos típicos.

En el siglo XIX, se creía que los campos magnéticos eran producidos por corrientes
dentro de la materia. Ampère propuso que los imanes permanentes se originaban en
corrientes atómicas fijas, pero el movimiento de partículas cargadas clásicas no podía
explicar completamente estas corrientes persistentes en los materiales ferromagnéticos.
Para que un material sea ferromagnético, se requiere que sus átomos posean momentos
magnéticos permanentes no atribuibles al movimiento de cargas clásicas.

Con el descubrimiento del spin del electrón, se comprendió que el magnetismo se origina
por la alineación de un gran número de spins de electrones en la misma dirección. Surgió
entonces la interrogante de cómo los spins “deciden” alinearse, dado que los electrones
en un extremo del imán no interactúan directamente con aquellos en el otro extremo. El
modelo de Ising fue concebido para investigar si las interacciones locales entre electrones
vecinos podrían explicar este fenómeno.

2.1.2. Aplicación sociofísica: modelo de Sznajd

El modelo de Sznajd, también conocido como Unidos permanecemos, divididos caemos
(USDF, por sus siglas en inglés), es un modelo de sociofísica introducido en el año 2000
[6] con el objetivo de comprender la dinámica de las opiniones en sistemas sociales. Este
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modelo extiende el modelo de spin de Ising y utiliza el concepto de validación social para
describir la propagación y cambio de opiniones dentro de una comunidad. En términos
simples, el modelo se basa en dos principios fundamentales:

Validación social: Si dos personas comparten la misma opinión, sus vecinos ten-
derán a adoptar esa opinión.

La discordia destruye: Si dos personas adyacentes tienen opiniones diferentes, sus
vecinos tenderán a adoptar opiniones opuestas a las de sus vecinos más cercanos.

Para modelar este sistema, consideremos una comunidad que, una y otra vez, debe
tomar una posición sobre un tema, por ejemplo, votar en un sistema bipartidista. Si cada
miembro de la comunidad puede adoptar solo dos actitudes posibles (denotadas como A
o B), en varias votaciones se espera observar una diferencia m entre los votantes a favor
de A y en contra. El objetivo del modelo es analizar la evolución temporal de m. Para
ello, se utiliza una cadena de spins de Ising Si (i = 1, 2, . . . , N) con las siguientes reglas
dinámicas:

1. Si SiSi+1 = 1, entonces Si−1 y Si+2 adoptan la dirección del par (i, i+ 1). (r1)

2. Si SiSi+1 = −1, entonces Si−1 adopta la dirección de Si+1, y Si+2 adopta la dirección
de Si. (r2)

Estas reglas describen la influencia de un par de individuos sobre las decisiones de sus
vecinos más cercanos. Cuando los miembros de un par comparten la misma opinión, sus
vecinos adoptan esa opinión. Por el contrario, si los miembros de un par tienen opiniones
opuestas, los vecinos más cercanos de cada uno discrepan con ellos. Estas reglas dinámicas
conducen a tres estados estables:

1. El consenso completo (estado ferromagnético), donde todos votan por A o por B.

2. El estado de alternancia (estado antiferromagnético), donde las opiniones alternan
entre A y B.

3. Un estado especial de 50 % de votos por A y 50 % de votos por B.

El tercer estado solo se alcanza de manera muy particular, cuando cada miembro de la
comunidad discrepa con su vecino más cercano. Esto es consistente con la idea principal
del modelo.

En términos de relevancia, el modelo de Sznajd ha emergido como una variación simple
pero significativa del modelo de Ising prototípico, que ha sido crucial en la sociofísica para
el estudio de fenómenos colectivos críticos.
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2.2. modelo de Markov

En el ámbito de la probabilidad y la estadística surge la noción de una cadena o proceso
de Markov. Este concepto describe un suceso estocástico que representa una sucesión de
eventos, en la cual la probabilidad de cada evento está determinada únicamente por el
estado en el que se encontraba el sistema en el evento anterior. Dependiendo de cómo
avanza el tiempo en la secuencia, se pueden distinguir dos tipos principales: una secuencia
interminable y contable que avanza entre estados en intervalos discretos de tiempo se
denomina cadena de Markov en tiempo discreto (DTMC), mientras que una secuencia en
tiempo continuo se conoce como cadena de Markov en tiempo continuo (CTMC). Estos
procesos llevan el nombre del matemático ruso Andréi Markov.

Los modelos estadísticos basados en las cadenas de Markov tienen múltiples aplicacio-
nes y son ampliamente utilizados para simular procesos del mundo real y distribuciones
complejas de probabilidad. Uno de los métodos más destacados es el método de Monte
Carlo de cadenas de Markov, que permite generar muestreos representativos de distri-
buciones complejas. Este enfoque es particularmente útil en campos como la física y el
procesamiento de señales, entre otros.

Los cambios en un sistema dentro de una cadena de Markov se conocen como transicio-
nes de estado, y las probabilidades asociadas a estas transiciones se representan mediante
una matriz de transición junto con un estado inicial o una distribución inicial dentro del
espacio de estados. La definición del proceso usualmente incluye todos los estados y tran-
siciones posibles, lo que asegura la continuidad del sistema y evita que termine de forma
abrupta. En un sistema que opera en tiempo discreto, los cambios de estado ocurren de
manera aleatoria en cada paso.

La teoría de Markov establece que la probabilidad condicional de transición hacia
un estado futuro, ya sea en el siguiente paso o en pasos más lejanos, está determinada
únicamente por el estado actual del sistema y no por los estados previos. Debido al carácter
aleatorio inherente del sistema, resulta difícil predecir con exactitud el estado futuro en
un momento específico. Sin embargo, es posible anticipar las propiedades estadísticas que
caracterizan dicho estado futuro, y en muchas ocasiones estas propiedades estadísticas
son de mayor interés para el análisis que la predicción puntual de un estado. Puesto que
en este trabajo se emplean cadenas de Markov discretas, se procede a realizar su análisis
matemático.

Cadena de Markov en tiempo discreto

Una cadena de Markov en tiempo discreto es una secuencia de variables aleatorias
X1, X2, X3, . . . que satisface la propiedad de Markov, lo que significa que la probabilidad
de moverse al siguiente estado depende únicamente del estado actual y no de los estados
anteriores. Formalmente, esto se expresa como:

P (Xn+1 = x | X1 = x1, X2 = x2, . . . , Xn = xn) = P (Xn+1 = x | Xn = xn),
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si ambas probabilidades condicionales están bien definidas y P (X1 = x1, . . . , Xn =
xn) > 0.

Los posibles valores de Xt forman un conjunto contable S, denominado espacio de
estados de la cadena.

Si el espacio de estados es finito, la distribución de probabilidad de transición puede
representarse mediante una matriz, llamada matriz de transición, donde el elemento (i, j)
de la matriz P está definido como:

pij = P (Xn+1 = j | Xn = i).

Dado que cada fila de P suma uno y todos sus elementos son no negativos, P es una
matriz estocástica derecha.

Se introduce la noción de distribución estacionaria, es decir, la distribución de pro-
babilidad en el estado estacionario del sistema cuanto el tiempo tiende a infinito. Una
distribución estacionaria π es un vector fila cuyos elementos son no negativos, suman uno
y permanecen invariantes bajo la operación de la matriz de transición P . Formalmente,
se define como:

πP = π.

Comparando esta definición con la de un autovector, se observa que los dos conceptos
están relacionados, y que:

π =
e∑
i ei

,

Donde e es un múltiplo normalizado (
∑

i πi = 1) de un autovector izquierdo de la
matriz de transición P asociado al autovalor 1. Si existe más de un autovector asociado
al autovalor 1, una combinación ponderada de los correspondientes estados estacionarios
también es un estado estacionario. Para una cadena de Markov, generalmente se estudia
el estado estacionario que es el límite de la secuencia de distribuciones a partir de una
distribución inicial.

Los valores de una distribución estacionaria πi están asociados con el espacio de estados
de P y sus autovectores, de manera que sus proporciones relativas se mantienen. Dado
que los componentes de π son positivos y cumplen la restricción de que su suma es la
unidad (

∑
i 1 ·πi = 1), π puede representarse como el producto escalar de π con un vector

cuyos componentes son todos 1. Esto implica que π pertenece al conjunto de vectores en
Rn cuyos componentes son positivos y suman 1, lo que es característico de distribuciones
de probabilidad.
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Aplicaciones

Los sistemas Markovianos aparecen extensivamente en termodinámica y mecánica es-
tadística, especialmente cuando las probabilidades se utilizan para representar detalles
desconocidos o no modelados de un sistema. Esto es posible bajo el supuesto de que
las dinámicas del sistema sean invariantes en el tiempo y que ninguna variable relevante
necesite ser considerada fuera de lo ya incluido en la descripción de cada estado.

Por ejemplo, un estado termodinámico opera bajo una distribución de probabilidad
que puede ser difícil o costoso de adquirir. Por esta razón, el método de Monte Carlo
basado en cadenas de Markov (MCMC) se utiliza para tomar muestras aleatorias de una
caja negra con el fin de aproximar la distribución de probabilidad de los atributos de un
rango de objetos.

Además, las cadenas de Markov se emplean en simulaciones de QCD en redes (lattice
QCD).

3. Entorno de desarrollo y herramientas

En esta sección se detalla el entorno y las herramientas utilizadas para llevar a cabo
este proyecto. También se ofrece una descripción de las mismas y se explica por qué fueron
elegidas en primera instancia.

Python es ampliamente reconocido por su simplicidad y facilidad de lectura, lo que
permite implementar rápidamente algoritmos complejos y manejar grandes cantidades de
datos de manera efectiva. Esto es especialmente beneficioso en proyectos que involucran
análisis de datos y simulaciones computacionales. Además, Python cuenta con una extensa
comunidad de desarrolladores y una amplia gama de bibliotecas enfocadas en estadísticas,
visualización de datos y simulaciones computacionales, lo cual garantiza un acceso abun-
dante a recursos y soporte comunitario. Por estas razones, se ha decidido utilizar Python
como el lenguaje principal para este proyecto [7].

En este proyecto se han utilizado varias bibliotecas de Python para simplificar el
análisis de datos y la ejecución de simulaciones:

1. NumPy y Pandas: Estas bibliotecas son indispensables para la manipulación y
análisis de datos. NumPy proporciona herramientas eficientes para realizar opera-
ciones matemáticas avanzadas, mientras que Pandas simplifica la gestión y transfor-
mación de grandes conjuntos de datos a través de estructuras como los DataFrames.
Estas herramientas han sido esenciales para el procesamiento y preparación de los
datos empleados en esta investigación [8, 9].

2. Matplotlib y Seaborn: Estas bibliotecas de visualización han sido fundamentales
para mostrar de forma clara e inteligible los resultados de los análisis y simulaciones.
Matplotlib proporciona flexibilidad para crear gráficos personalizados, mientras que
Seaborn facilita la generación de gráficos estadísticos con un diseño más estético
[10].
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3. SciPy y NetworkX: SciPy se ha empleado para llevar a cabo cálculos estadísticos
y análisis complejos, mientras que NetworkX ha sido utilizado para la modelización
y análisis de redes, fundamentales para estudiar cómo interactúan los agentes en
sistemas socio-físicos.

4. SimPy: Esta biblioteca se ha utilizado para crear y examinar simulaciones basadas
en eventos discretos, permitiendo modelar interacciones y dinámicas complejas en
sistemas políticos .

La combinación de estas herramientas proporciona un entorno robusto para la inter-
pretación de información y la creación de escenarios virtuales, permitiendo abordar el
problema desde múltiples perspectivas: desde el tratamiento preliminar de datos hasta la
presentación gráfica y el análisis detallado de las dinámicas simuladas.

Para garantizar la portabilidad y la uniformidad del entorno de desarrollo y ejecu-
ción del trabajo, se ha empleado Docker. Esta herramienta que permite empaquetar una
aplicación junto con todas sus dependencias en un contenedor virtual, el cual puede ser
desplegado en cualquier sistema compatible. Este enfoque resuelve problemas comunes re-
lacionados con las discrepancias entre los entornos de desarrollo y producción, asegurando
que la aplicación mantenga un funcionamiento consistente independientemente de dónde
se ejecute.

La elección de Docker fue motivada por la necesidad de ejecutar el proyecto en distintas
máquinas de forma eficiente, evitando problemas de dependencias o configuraciones de
entorno. Entre sus principales beneficios destacan:

Uniformidad: Se asegura que el proyecto funcione de manera consistente en to-
dos los sistemas, eliminando los problemas relacionados con las variaciones en las
configuraciones locales.

Simplicidad en la configuración: Todo lo necesario para el proyecto, incluidos
los requisitos del sistema y las bibliotecas, se define en el Dockerfile, lo que facilita
la configuración del entorno.

Portabilidad: La implementación en diferentes infraestructuras se simplifica, per-
mitiendo realizar simulaciones y análisis en máquinas diversas sin necesidad de ajus-
tes adicionales.

El uso de Docker ha resultado crucial para mantener la cohesión entre los diferentes
entornos de trabajo y ha desempeñado un papel importante en la eficiencia y éxito del
proyecto.

Durante la realización del proyecto, se ha empleado GitHub como herramienta clave
para la gestión y organización del código fuente. GitHub es una plataforma basada en
Git, un sistema de control de versiones distribuido que facilita el manejo y seguimiento
de los cambios realizados en los archivos del proyecto.

El uso de GitHub ha brindado múltiples beneficios importantes para la estructura
interna del proyecto:
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Gestión de versiones: GitHub simplifica el seguimiento de todas las modifica-
ciones efectuadas en los archivos del proyecto. Cada cambio puede ser revisado y
revertido si es necesario, lo que proporciona un control detallado sobre la evolución
del software.

Documentación: GitHub ofrece recursos para la creación de documentación del
proyecto, como un sistema de wiki y la gestión de issues, fundamentales para man-
tener un registro claro de las funcionalidades del proyecto, tareas pendientes y pro-
blemas identificados y resueltos.

Estas herramientas se han seleccionado y utilizado para asegurar un progreso organi-
zado y eficiente en el trabajo, mejorando tanto el análisis de datos como las simulaciones,
que son parte fundamental del proyecto.

4. Extracción y procesamiento de datos

En esta sección, se abordan los detalles referentes a los conjuntos de datos utilizados.

4.1. Datos históricos de las elecciones al senado

En la primera parte de este estudio se utilizan los datos históricos sobre las elecciones
al senado desde 1977 hasta 2023, obtenidos de la pagina web del senado español [11]. Este
conjunto de datos dispone de las siguientes variables:

1. Tipo convocatoria: Identifica el tipo de elección o evento electoral.

2. Id convocatoria: Código único para identificar la convocatoria electoral.

3. ccaa: Comunidad autónoma a la que pertenece la circunscripción electoral. En este
archivo, los valores están vacíos.

4. prv: Provincia de la circunscripción electoral. Esta variable también contiene valores
vacíos.

5. circunscripción: Código de la circunscripción electoral. Sin datos en este archivo.

6. municipio: Código del municipio asociado al evento electoral. Sin datos en este
caso.

7. distrito: Código del distrito electoral. En este archivo, los valores están vacíos.

8. candidatura: Nombre del partido político o agrupación electoral al que pertenece
el candidato.

9. nombre: Nombre de pila del candidato.

10. primer apellido: Primer apellido del candidato.
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11. segundo apellido: Segundo apellido del candidato.

12. votos: Número de votos obtenidos por el candidato en la circunscripción correspon-
diente.

Este conjunto de datos se centra principalmente en los resultados por candidato, ofre-
ciendo información relevante sobre los votos obtenidos y la afiliación partidista. Permite
un análisis detallado del comportamiento electoral a nivel de partido y candidato.

4.2. Datos históricos de las elecciones generales

En la segunda parte se hace uso de los datos históricos de las elecciones generales al
congreso, obtenidos de la pagina web del ministerio del interior español [12]. Este conjunto
de datos dispone de las siguientes variables:

1. ID_Registro: Identificador único de cada registro en el conjunto de datos.

2. Nombre_Convocatoria: Nombre de la convocatoria electoral.

3. Fecha_Convocatoria: Fecha de celebración de la convocatoria electoral.

4. Codigo_Convocatoria: Código numérico asignado a la convocatoria electoral.

5. Tipo_Eleccion: Tipo de elección celebrada.

6. Distrito: Código del distrito electoral en el que se realiza la votación.

7. Seccion: Código de la sección electoral dentro del distrito.

8. Partido: Nombre del partido político o agrupación electoral que participa en la
elección.

9. Votos: Número de votos obtenidos por el partido en la sección electoral correspon-
diente.

La manipulación y preprocesado de los datos se llevó a cabo utilizando Python, apro-
vechando librerías especializadas como NumPy. Esta herramienta permitió filtrar valores
erróneos o atípicos presentes en los conjuntos de datos y garantizar la limpieza necesaria
para el análisis posterior. Además, se realizaron operaciones previas fundamentales, como
la normalización de variables, para homogeneizar las escalas y facilitar la interpretación
de los resultados. Este preprocesado fue clave para obtener una base de datos fiable y
adecuada para los análisis posteriores en el marco del trabajo.
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5. Experimentos

Después de haber establecido el marco teórico requerido, nos centraremos ahora en
la implementación práctica de estos conceptos: la creación de un modelo que ayude a
comprender cómo se forma la opinión social en el ámbito político español. Este paso es
crucial para avanzar en la comprensión de esta dinámica y para confirmar la utilidad de
la teoría sociofísica en entornos experimentales reales.

5.1. Universalidad de la dinámica de voto

El estudio de los datos electorales ha mostrado tendencias en el comportamiento que
van más allá de las diferencias culturales y políticas en diversas situaciones sociales y
económicas en las que se desarrollan las elecciones políticas actuales. Uno de los logros
más notables en esta área es el hallazgo de patrones comunes en los procesos de votación
a nivel universal tal y como se muestra en el estudio realizado por Fortunato y Castellano
en 2007 [13] al demostrar que en sistemas electorales proporcionales que utilizan listas
abiertas existe una distribución de votos entre los candidatos de un mismo partido que
sigue un patrón universal independiente del país y el año. Este descubrimiento sugiere
que el comportamiento colectivo de los votantes está influenciado principalmente por
dinámicas sociales básicas, como la comunicación y el intercambio de opiniones, y menos
por factores particulares del entorno sociopolítico.

El estudio demuestra que al ajustar el número de votos recibidos por los candidatos
según el tamaño de sus listas y el total de votos obtenidos por el partido político, se
pueden identificar patrones recurrentes que pueden ser modelados de forma muy precisa.
Estas regularidades se han observado en elecciones realizadas en diferentes países como
Italia, Polonia y Finlandia a lo largo de varias décadas, reflejando dinámicas electorales
persistentes. Los autores sugieren que estos patrones son consistentes con modelos basados
en procesos ramificados, donde las interacciones locales entre los votantes desempeñan un
papel fundamental.

El propósito de este apartado es comprobar si este tipo de dinámica universal se
observa en el contexto español mediante el análisis de datos de elecciones proporcionales
en España, determinando si los patrones de distribución de votos entre candidatos del
mismo partido pueden ser descritos por el modelo propuesto. A través de esta investigación
experimental no solo se busca confirmar la presencia de la universalidad en las elecciones
españolas, sino también interpretar posibles desviaciones o particularidades que puedan
surgir debido al contexto sociopolítico local. En los apartados siguientes se detallarán los
métodos empleados y los resultados alcanzados junto a su análisis para ofrecer nuevas
visiones sobre cómo pueden aplicarse los enfoques socio-físicos al estudio de la política en
España.

Siguiendo el enfoque metodológico propuesto por Fortunato y Castellano, se busca
identificar regularidades en la distribución de sufragios entre candidatos pertenecientes a
un mismo partido político y determinar si estas regularidades están libres de influencias
externas como el trasfondo histórico o cultural del entorno político.
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Para lograr esto, se han empleado datos de elecciones proporcionales donde los electores
expresan sus preferencias individuales por candidatos dentro de las listas de sus partidos
políticos correspondientes. Se ha optado por realizar esta parte del estudio con los datos de
las elecciones al senado ya que es el único proceso electoral en España con listas abiertas.
Se han analizado aspectos clave como la cantidad de votos recibidos por cada candidato
específico (vi), el tamaño de la lista a la que pertenecían (Qli) y el total de sufragios
obtenidos por dichas listas en la circunscripción respectiva (Nli).

El proceso de análisis comienza normalizando de los datos para neutralizar el efecto
de variables como el tamaño de los grupos y las listas en los resultados obtenidos. Esto
permite crear una métrica relativa definida como:

v0 =
N

Q
, (1)

donde v0 representa el promedio de votos por candidato en una lista. Basándose en esta
métrica, se introduce un ratio rescalado que evalúa el rendimiento de cada candidato en
relación con el promedio de su lista:

vQ/N =
v

v0
. (2)

Este ratio permite identificar candidatos con un desempeño por debajo (< 1), igual (= 1)
o superior (> 1) al promedio de su lista, lo que a su vez posibilita una comparación
equitativa entre listas de distinta longitud.

Después de eso, se reúnen los datos de candidatos con ratios parecidos, creando un
histograma y se examinan las distribuciones obtenidas. Los resultados de Fortunato indi-
can que estas distribuciones convergen en una curva universal que no depende del tamaño
del grupo o de la lista, sino de la variable vQ/N tal que:

P (v,Q,N) = F

(
vQ

N

)
, (3)

donde F (vQ/N) es una función de distribución universal que describe el comportamien-
to colectivo de los votantes. Estos hallazgos sugieren que los patrones observados en la
asignación de votos pueden aplicarse de manera universal y están influenciados más por
dinámicas sociales fundamentales que por factores específicos del contexto.

Finalmente, utilizando un análisis estadístico se establece la forma de la distribución
universal, la cual se ajusta a una distribución log-normal:

F (vQ/N) =
1√

2πσ2(vQ/N)
exp

(
−(log(vQ/N)− µ)2

2σ2

)
, (4)

donde los parámetros µ y σ definen la posición y la dispersión de la curva, respectivamente.

En la figura 1 podemos observar la distribución universal obtenida por Fortunato y
Castellano junto a la obtenida al analizar los datos del Senado español. El error cuadrático
medio calculado en la distribución experimental es del orden de 10−1 que en el peor de los
casos correponde a un error de aproximadamente el 3 %, por lo que podemos determinar
que es un buen ajuste.
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Figura 1: Distribución universal teórica en verde (µ = −0.54, σ2 = 1.08). Valores experi-
mentales obtenidos en azul. Ajuste log-normal experimental en rojo (µ = 0.2, σ2 = 0.98).

Se observa que las distribuciones no solapan, esta situación sugiere que aquí no se sigue
la regla general observada en naciones como Italia o Polonia y Finlandia. A pesar de ello,
es relevante enfatizar que la distribución de datos en España también se ajusta al patrón
log-normal compartido por el resto de los países estudiados. Este descubrimiento indica
que a pesar de las diferencias destacadas presentes en ello, el proceso de transmisión de
opinión en el ámbito político español comparte rasgos esenciales comunes a los de otras
naciones, al menos en lo que respecta a la estructura fundamental de la distribución.

La principal disparidad entre las distribuciones reside en la ubicación del pico máximo;
en el caso de España se encuentra notablemente más centrado en la unidad que en la curva
universal. Este hecho sugiere que dentro del marco electoral español es menos común
que un aspirante destaque de forma sobresaliente frente a sus compañeros de partido
en comparación a lo observado en otros entornos políticos similares. Esta particularidad
puede encontrarse relacionada directamente a una característica sociopolítica peculiar
identificada dentro de España; los votantes parecen estar más influenciados por la afiliación
partidista del candidato que por las cualidades individuales particulares que distinguen
al propio candidato como persona única e independiente.

Esta tendencia se ajusta a las características del contexto político español, tal y como
muestra este artículo [14], en el que los partidos políticos desempeñan un papel destacado
en la movilización y comportamiento de los electores. En contraste con esto, en otros
países como Italia, Polonia y Finlandia la figura del candidato individual puede tener una
influencia más significativa en la decisión del votante. Lo que podría explicar el cambio
en el punto máximo de la distribución general.

En este sentido se deduce que los procesos de transmisión de opinión y comportamien-
to electoral en España siguen patrones universales similares a los investigados en otras
naciones. Por lo tanto, se refuerza la idea de que, en esencia, la dinámica electoral está
regida por leyes universales que no dependen de variables concretas relacionadas con el
entorno social. Si bien pueden haber variaciones regionales, la uniformidad en la distribu-
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ción corrobora la utilidad de herramientas de sociofísica en el análisis de acontecimientos
políticos en el contexto de España.

5.2. Modelo de Markov para el comportamiento electoral

Una vez se ha determinado la idoneidad de la sociofísica como herramienta para el
estudio de la política en España, se intenta obtener un modelo físico que permita el estu-
dio analítico de la dinámica electoral. En primer lugar, se propone la hipótesis de que el
sistema electoral pueda tener memoria, es decir, que los resultados de elecciones pasadas
podrían influir en las tendencias futuras. Esto sugiere que un modelo adecuado debería
considerar los procesos electorales anteriores y sus resultados para capturar adecuada-
mente la dinámica del sistema. Con el objetivo de comprobar si esta hipótesis es cierta,
se plantea un marco matemático basado en un modelo de Markov estocástico.

El modelo de Markov permite analizar la evolución temporal de una elección a la
siguiente, de manera que construiremos una cadena de Markov en tiempo discreto donde
cada paso temporal será cada proceso electoral. El modelo que se plantea consta de tres
estados posibles:

1) El lider electo ha sido elegido por primera vez

2) El lider electo ha sido reelegido una vez

3) El lider electo ha sido reelegido dos o más veces

Para decidir el número de estados en la cadena, se han tomado los resultados obtenidos
en [15] que indican que tres estados son suficientes para modelizar el comportamiento de
este tipo de sistemas.

Matemáticamente podemos expresar este modelo: Sea Xmn ∈ R3 el vector que repre-
senta las tres probabilidades asociadas a un liderazgo democrático:

xn =

 Probabilidad de ser recién elegido,
Probabilidad de ser reelecto una vez,

Probabilidad de ser reelecto múltiples veces


Las probabilidades xn se actualizan en cada elección mediante el modelo de Markov basado
en la elección previa, según la expresión:

xn = Pxn−1, (5)

donde P es una matriz de probabilidades que describe las probabilidades de transición
entre los tres estados, dada por:

P =

p1,1 p1,2 p1,3
p2,1 p2,2 p2,3
0 p3,2 p3,3


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A continuación, se describe brevemente la estructura de la matriz de probabilidades y
su interpretación. Al inicio de cada ciclo electoral, siempre se elige un líder democrático.
En la elección siguiente, con probabilidad p1,1, otro líder recién elegido puede surgir, o el
líder actual es reelecto con probabilidad p1,2, donde p1,2 = (1−p1,1), ya que estas son las dos
únicas posibilidades. Una vez que un líder ha sido reelecto, existen tres posibles resultados
en la elección siguiente: un nuevo líder es elegido (con probabilidad p1,2), el líder es reelecto
una vez más (con probabilidad p2,2) o el líder es reelecto múltiples veces (con probabilidad
p3,2). Como estas son las únicas posibilidades, se cumple que p3,2 = (1 − p1,2 − p2,2). La
figura 2 representa cada transición

Figura 2: Descripción general del modelo de Markov mostrando los tres estados de un
líder/partido y su correspondiente probabilidad de transición. La transición descrita por
p2,2 modela situaciones en las que un líder reelecto no puede finalizar su mandato, y un
líder no elegido previamente asume el cargo. Si este nuevo líder es elegido en la elección
siguiente, entonces la probabilidad p2,3 captura este caso particular.

Para ajustar el modelo y calcular la matriz de transición de probabilidades P, se realiza
un análisis basado en los datos disponibles. Los elementos de la matriz P se calculan
mediante la siguiente ecuación:

Pij =
mij

mi

, (6)

donde i y j representan uno de los tres estados, mij es el número total de líderes que
pasaron del estado i al estado j según los datos, y mi es el número total de líderes en el
estado i.
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Dado que la matriz P es estocástica por columnas e irreducible, el teorema del punto
fijo garantiza la existencia de un único punto fijo globalmente atractivo. Este punto fijo
corresponde a la distribución de equilibrio estacionaria del modelo de Markov cuando
el número de elecciones tiende a infinito (n → ∞), y satisface la relación de estado
estacionario:

x = Px, (7)

donde x es el vector de probabilidades en estado estacionario. Resolver esta ecuación
equivale a encontrar el autovector unitario de P, normalizando las probabilidades para
que sumen uno.

5.2.1. Resultados experimentales

Se procede a realizar los cálculos concretos en el contexto español. En la figura 3 se
puede observar el diagrama de todas las presidencias y la transición de estado que se
realiza en cada nueva legislatura.

Figura 3: Diagrama de todas las presidencias y la transición de estado que se realiza en
cada nueva legislatura

Con estos datos y usando la ecuación 6 podemos calcular la matriz de transición P.

P =

0.2 0.4 0.5
0.8 0.2 0
0 0.4 0.5


Ahora se calcula el autovector normalizado asociado al autovalor 1 a partir de la

ecuación 7, ya que este representa el vector de probabilidades en estado estacionario:

x = [0.38, 0.38, 0.24] (8)

Esto implica que en el estado estacionario la probabilidad de estar en el estado 1 es
del 38 %, la probabilidad de estar en el estado 2 es del 38 % y la probabilidad de estar en
el estado 3 es del 24 % cuando el número de elecciones tiende a infinito (n → ∞).
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Prueba de bondad de ajuste Chi-cuadrado

Para evaluar la validez del modelo de Markov propuesto, se realiza una prueba estándar
de bondad de ajuste Chi-cuadrado. Este test permite comparar las frecuencias observadas
en los datos con las frecuencias esperadas generadas por el modelo, comprobando si las
diferencias entre ambas son estadísticamente significativas.

La hipótesis nula (H0) plantea que las frecuencias observadas no difieren significativa-
mente de las frecuencias esperadas, lo que implicaría que el modelo describe adecuadamen-
te los datos. La hipótesis alternativa (Ha) establece que existen diferencias significativas,
lo que indicaría que el modelo no es adecuado.

El estadístico Chi-cuadrado (χ2) se calcula mediante la fórmula:

χ2 =
k∑

i=1

(Oi − Ei)
2

Ei

, (9)

donde:

Oi son las frecuencias observadas.

Ei son las frecuencias esperadas generadas por el modelo.

k es el número de categorías o estados considerados.

En este caso, se tienen las frecuencias observadas O = (5, 5, 2) y las frecuencias espe-
radas E = (4.56, 4.56, 2.88), correspondientes a los tres estados definidos en el modelo de
Markov.

Sustituyendo estos valores en la ecuación 9, se obtiene:

χ2 = 0.354.

El valor calculado de χ2 se compara con una distribución Chi-cuadrado con k − 1 =
3− 1 = 2 grados de libertad. El p-valor asociado a este estadístico es p = 0.838.

Dado que el p-valor obtenido (p = 0.838) es significativamente mayor que un nivel de
significancia típico, no se puede rechazar la hipótesis nula. Esto indica que las frecuencias
observadas no difieren significativamente de las esperadas, lo cual sugiere que el modelo
de Markov propuesto describe adecuadamente los datos.

El resultado de la prueba Chi-cuadrado respalda la validez del modelo de Markov para
representar el comportamiento electoral analizado. Esto implica que las probabilidades de
transición entre estados estimadas por el modelo son consistentes con las observaciones
empíricas, proporcionando evidencia a favor de la hipótesis de que el sistema electoral
tiene memoria.
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Sabiendo que el sistema tiene memoria, se plantea la pregunta, ¿cuáles son las princi-
pales influencias en el comportamiento electoral? Como señalan algunos estudios [16, 17],
una teoría que se ha planteado para justificar la conducta de los electores es que estos
están influenciados por su entorno familiar, amigos o red social. Otro factor que podría
explicar las tasas de reelección de los líderes es la opinión de su reputación entre los vo-
tantes. De acuerdo a investigaciones anteriores [18], los electores perciben al líder como
exitoso o fracasado, lo cual puede tener diferentes niveles de impacto en su decisión electo-
ral. Partiendo de estas dos teorías, se crea un modelo de votación que combine el elemento
de memoria del sistema, planteado en el modelo de Markov de tres estados, junto a la
influencia que ejercen la familia, amigos, redes sociales y la imagen del líder político en
cada elector de manera individual.

5.3. Modelo de voto

En la sección anterior, se ha anlizado el comportamiento electoral en España, mos-
trando patrones significativos en las decisiones de los votantes. Una posible explicación
de las dinámicas observadas radica en la influencia de factores como la familia, los amigos
y la reputación del líder sobre los votantes individuales. Para comprender completamen-
te estos datos, se requiere un modelo que incorpore tanto las influencias sociales a nivel
individual como los mecanismos que llevan a los votantes a decidir basándose en quién
estaba previamente en el poder. Estos mecanismos operan en diferentes etapas del proceso
electoral, por lo que es necesario construir un modelo descriptivo que refleje la estructura
del sistema de votación en España.

El modelo de votación se divide en tres etapas o niveles: micro, meso y macro. En
el nivel micro, los votantes individuales se agrupan en Nc distritos electorales de igual
tamaño, con Nv votantes en cada distrito. Los votantes de cada distrito electoral se mo-
delan utilizando una versión 2D modificada del modelo de Sznajd [19], que incorpora las
influencias de los vecinos sociales más cercanos, los resultados de elecciones previas y el
éxito (β) del líder previamente elegido.

Dado que España es un país con una fuerte tendencia bipartidista, se realizará una
simplificación del sistema electoral considerando la existencia de solo dos partidos políti-
cos.

En el nivel micro, el país se divide en distritos electorales donde cada ciudadano emite
su voto eligiendo entre las dos opciones disponibles (denotadas por −1 y +1). Los votos
se contabilizan y el partido que obtiene la mayoría en un distrito gana la representación
de ese territorio, asignándosele un escaño. Este proceso refleja un sistema mayoritario
en el que el candidato más votado en cada circunscripción obtiene la totalidad de la
representación.

En el nivel meso, los representantes elegidos en los distintos distritos se agrupan según
su afiliación partidista, conformando los dos bloques parlamentarios principales. Dentro de
cada partido, los diputados votan internamente para seleccionar a su líder, quien actuará
como principal figura del partido en el proceso de formación de gobierno. Este mecanismo
refleja la disciplina partidaria y el proceso de elección interna de liderazgo común en el
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sistema político español.

Finalmente, en el nivel macro, el líder del partido con mayor representación parlamen-
taria es propuesto como candidato a la presidencia del gobierno. Si su partido obtiene la
mayoría absoluta de escaños, se le otorga directamente el cargo. β representa el desempe-
ño del mandato del presidente del gobierno que se retroalimenta al nivel micro, influyendo
en las siguientes decisiones de los votantes.

El partido político que lidera antes de las elecciones mantiene al líder democrático
solo si su mandato es considerado exitoso. El éxito de un mandato se evalúa de manera
aleatoria, asignándole una puntuación que determina si fue exitoso o no exitoso. En caso
de que el mandato sea considerado no exitoso, el partido realiza una votación para elegir
a un nuevo líder. Cada partido elige a su líder basándose en una puntuación de liderazgo
asignada a cada parlamentario de su partido, tomada de una distribución normal.

En el proceso de elección de liderazgo, se enfrentan los dos legisladores con las puntua-
ciones de liderazgo más altas. Dado que la mayoría de los parlamentarios elegidos tienen
escaños seguros, suelen tener posturas políticas firmes, por lo tanto, buscarán un líder
de partido que también represente estas posturas y viceversa. En consecuencia, todos los
demás legisladores votan por el candidato que tiene una orientación política más cercana
a la suya.

El líder del partido con el mayor número de votos de legisladores es seleccionado como
líder en el nivel macro. Su reputación, que puede ser exitosa o no exitosa, se denota como
βexito y βnoexito, respectivamente. Esta reputación se determina aleatoriamente comparan-
do si un número generado es menor o mayor que la puntuación de liderazgo del líder,
influyendo así en las decisiones de los votantes en las siguientes elecciones.

Solo se consideran dos tipos de reputación, ya que investigaciones previas han de-
mostrado que los votantes solo perciben el mandato del líder como exitoso o no exitoso
[18].

Tensión T

En el nivel micro, el comportamiento de los votantes individuales se modela utilizando
una versión modificada del modelo 2D de Sznajd. Este modelo introduce un parámetro de
tensión, T , que describe la interacción entre la preferencia partidista de un votante y las
decisiones de sus vecinos más cercanos. Esta tensión es un claro reflejo del Hamiltoniano
que se encuentra en un modelo clásico de Ising. La tensión para cada votante i se define
como:

Ti = −J

2
si
∑
⟨il⟩

sl − µsi, (10)

donde si = ±1 representa la elección del votante i entre los dos partidos políticos
disponibles. El parámetro J describe la intensidad de la influencia social entre los vecinos
más cercanos ⟨il⟩, restringida al rango de influencia de l vecinos. Si los vecinos comparten
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la misma preferencia partidista, la tensión entre ellos es baja; por el contrario, las diferen-
cias en las preferencias generan una tensión mayor. Por su parte, µ representa la influencia
externa ejercida por el líder del partido político en el poder, incluyendo su reputación y la
memoria electoral del distrito. Un claro reflejo del momento magnético que encontramos
en el modelo clásico de Ising, que determinaron qué cantidad interactuarán las partículas
en el campo externo.

Influencia externa µ

La influencia externa, µ, refleja el comportamiento previo del distrito electoral, consi-
derándose como:

µ = sign(s̄prev)− β sign

(
1

Nc

Nc∑
j=1

s̄prev
j

)
, (11)

donde s̄prev es el voto promedio del distrito en las elecciones anteriores, y 1
Nc

∑Nc

j=1 s̄
prev
j

representa el promedio del voto en todos los distritos. El término µ, por lo tanto, tiene en
cuenta si el distrito votó de acuerdo a la mayoría del país o no. En los casos en los que un
distrito mantuvo una preferencia partidista coherente con el resultado nacional, la tensión
en el sistema disminuye, reflejando estabilidad. Por el contrario, un resultado disonante
aumenta la tensión y empuja a un cambio de voto para las siguientes elecciones.

El parámetro β introduce el desempeño del líder previo en el modelo, donde:

β =

{
βexito si el mandato del líder fue exitoso,
βnoexito si el mandato del líder fue no exitoso.

Tanto βexito como βnoexito tienen un efecto negativo sobre los votantes si se consideran
valores positivos. Para determinar si un mandato fue exitoso o no, se genera un número
aleatorio de una distribución uniforme y se compara con la puntuación de liderazgo del
líder. Si el número aleatorio es menor que la puntuación de liderazgo, el mandato se
considera exitoso; de lo contrario, no exitoso. Este mecanismo conecta directamente el
desempeño del líder con las decisiones de los votantes en las siguientes elecciones.

Para determinar la probabilidad de que un distrito electoral esté en una configuración
particular, es decir, haya votado de cierta manera, se utiliza la distribución de Boltzmann.
La probabilidad se define como:

P (s) =
e−

∑Nv
i=1 Ti∑

s=±1 e
−Ti

, (12)

donde Nv es el número de votantes en un distrito electoral. En este modelo, tanto la
temperatura como la constante de Boltzmann se han fijado en la unidad. La distribución
de Boltzmann se elige porque la configuración más probable de los votantes se obtiene
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maximizando la ecuación (11), lo que equivale a minimizar la tensión total (
∑Nv

i=1 Ti) para
cada distrito electoral. Corresponde análogamente a reducir la energía (el Hamiltoniano)
en un modelo clásico de Ising.

Para las dos primeras elecciones, la influencia externa µ se establece en cero, ya que
en las primeras elecciones no existe un líder establecido. A partir de la tercera elección,
la influencia externa µ comienza a tener un efecto en los votantes.

5.3.1. Análisis inicial y calibración del modelo

Antes de realizar simulaciones del modelo de votación, es necesario acotar el espacio de
parámetros a explorar, ya que no está claro qué valores deberían asignarse al parámetro
de influencia social J o a las influencias externas del líder, βexito y βnoexito. Para ver
la influencia de cada uno de estos parámetros en el promedio de voto s̄ se realiza una
aproximación de campo medio tamando una red bidimensional periódica (2D), donde los
votantes están influenciados por sus cuatro vecinos más cercanos: arriba, abajo, izquierda
y derecha denotado z = 4.

Se identifican dos comportamientos generales esperados para el modelo. Para un aco-
plamiento J pequeño, se espera que la tensión de cada votante sea gobernada principal-
mente por la influencia del líder (µ). En este caso, partiendo de una distribución inicial
uniforme de preferencias entre los votantes, el promedio de votos en un distrito electoral
(s̄) será aproximadamente cero. Aunque habrá fluctuaciones aleatorias debido a la ecua-
ción 11, en promedio, esta influencia externa tenderá a cero, lo que hará que la media de
votos tienda a cero.

Por otro lado, para valores de J grandes, la influencia del líder es despreciable, ya que
los votantes se agrupan con otros con preferencias similares. En este caso, se espera que
el líder se mantenga en el poder.

Influencia de J y µ

Para estudiar analíticamente cómo afecta la influencia del líder al voto para uno o
varios distritos, se considera una aproximación de campo medio, es decir, se considera un
único distrito y se aproxima la interacción de los vecinos cercanos por su voto medio s̄.
Se obtiene la siguiente tensión aproximada para cada votante:

T (si) ≈ −
(
Jz

2
s̄+ µ

)
si = Taprox · si, (13)

Como la tensión de cada votante está desacoplada, la probabilidad de que un votante
si tenga una preferencia específica se expresa como:

p(si) =
e−Taproxsi

eTaprox + e−Taprox
(14)
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y para mantener consistencia con la aproximación de campo medio, el promedio es-
perado del valor del voto (s̄) calculado a partir de esta distribución debe coincidir con el
promedio de votos:

s̄ =
∑
si=±1

p(si)si =
e−Tapprox − eTapprox

eTaprox + e−Tapprox
= tanh(Taprox) (15)

De esta forma, se obtiene la ecuación de campo medio que describe el comportamiento
promedio del modelo:

s̄ = tanh

(
Jz

2
s̄+ µ

)
. (16)

Esta ecuación es trascendental, lo que implica que no tiene solución analítica. Para
poder extraer información se buscan soluciones de forma gráfica para distintas combina-
ciones de los parámetros: Jz >> 1, Jz << 1 y µ > 0, µ < 0.

Si Jz >> 1 (una influencia social alta) obtenemos los resultados de la figura 8

(a) µ > 0 (b) µ < 0

Figura 4: La curva roja/azul representa el lado izquierdo/derecho de la ecuación (16)
cuando Jz >> 1. Las intersecciones se marcan en verde

Si Jz >> 1 (una influencia social baja) obtenemos los resultados de la figura 8
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(a) µ > 0 (b) µ < 0

Figura 5: La curva roja/azul representa el lado izquierdo/derecho de la ecuación (16)
cuando Jz << 1. Las intersecciones se marcan en verde

Se observa que el efecto de la influencia externa µ conduce a un s̄ del mismo signo
que µ. Si además β toma valores pequeños, aumenta la preferencia por votar al mismo
resultado de las elecciones anteriores, ya que de la ecuación 11 µ ≈ sign(s̄prev) y se acaba
de ver que s̄ tendrá el mismo signo que µ.

La solución de esta ecuación revela que la influencia externa µ genera un s̄ con el
mismo signo que µ. Por lo tanto, cuando µ > 0, el promedio se desplaza hacia valores
positivos; y cuando µ < 0, hacia valores negativos. Esto puede observarse en las soluciones
gráficas de la ecuación para diferentes valores de µ, Jz, y pequeñas perturbaciones en β.
Por otro lado, a medida que el acoplamiento crece, las soluciones tienden a los valores
extremos (±1), reflejando una mayor polarización entre los votantes.

Influencia de β

Para analizar la influencia del parámetro β se asume el caso en el que todos los distritos
electorales votan con el mismo promedio s̄ y por lo tanto 1

Nc

∑Nc

j=1 s̄
prev
j = 1. Esto implica

que la influencia externa puede escribirse:

µ = sign(s̄)(1− β)

Para trabajar analíticamente se aproxima por una función suave:

µ = sign(s̄)(1− β) ≈ tanh(αs̄)(1− β), α ∈ R+, (17)

con α ≫ 1.
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Para obtener soluciones de la ecuación 16 no triviales (s̄ ̸= 0), el sistema no puede ser
estable alrededor de esta solución. Esto implica que la derivada de la parte derecha de la
ecuación en el 0 sea mayor que la unidad:

Jz

2
+ α(1− β) > 1. (18)

Si 0 < β < 1 (siendo α lo suficientemente grande) el sistema siempre cumplirá la
condición sin importar el valor de J . Por otro lado, si J > 1 nunca se cumple la condición.
Por ello, no se espera encontrar un valor crítico de J en las simulaciones.

Siempre que 0 < β < 1 y α sean lo suficientemente grandes, el modelo cumplirá
esta condición independientemente del valor de la constante de acoplamiento J . Por el
contrario, si β > 1, entonces, para α suficientemente grande, nunca se espera cumplir
esta condición. Por lo tanto, no se espera observar un valor crítico de la constante de
acoplamiento en las simulaciones numéricas, pero la constante de acoplamiento aún puede
tener un efecto en las tasas de reelección.

Aunque no parece haber un parámetro crítico, se observa un efecto claro al variar el
valor de la constante de acoplamiento J y los parámetros de reputación β en la apro-
ximación de campo medio. En particular, un parámetro de reputación positiva β > 0
tiene un impacto negativo en los votantes, reduciendo así la probabilidad de que un líder
sea reelegido, mientras que un β < 0 aumenta dicha probabilidad. También se observa
que, a medida que la constante de acoplamiento aumenta, las soluciones no triviales de
la ecuación 16 tienden a ±1. Por lo tanto, para que el modelo reproduzca los diferentes
comportamientos de votación observados, es necesario variar ambos parámetros.

5.3.2. Resultados experimentales

Para realizar las simulaciones, se elige Nc = 52, ya que en España existen 52 cir-
cunscripciones electorales, y Nv = 100. Los agentes se colocan en enrejados de tamaño
Nv ·Nv y cada uno se verá influenciado por sus cuatro vecinos más próximos: arriba, abajo,
izquierda y derecha con condiciones de frontera periódicas.

Para calcular los porcentajes de reelección de líderes, se simulan 30 elecciones y se
repite el proceso 5 veces para obtener la media y reducir el error estadístico. Como se
calcula la media de 5 simulaciones, se puede obtener el error estándar. El mayor error
cometido: Emax = 0.03 que es aproximadamente un error de 3 %.

En primer lugar, se quiere conocer experimentalmente los efectos de los parámetros
J, βexito, βnoexito. Para ello, tal y como se puede observar en la figura 6, se fija el valor
βexito = 0 y se realizan las simulaciones para cada pareja de valores J, βnoexito en el
intervalo [0, 1]. Se observa que cuanto menor sea βnoexito, menor es la tasa de reelección;
esto tiene sentido ya que una βnoexito alta implica que la probabilidad de reelegir líderes
más exitosos es más alta, mientras que la probabilidad de reelegir líderes menos exitosos
es más baja.
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Figura 6: Tasas promedio de reelección de líderes, con βexito = 0. Los colores indican la
tasa de reelección de un líder.

Por otro lado, podemos realizar las mismas simulaciones anulando esta vez βnoexito = 0.
Se obtiene la figura 7. Se observa que la tasa de reelección es muy baja para todos los
valores de J, βnoexito. Por tanto, se deduce que βnoexito tiene un impacto mucho mayor en
los votantes de lo que tiene βexito, ya que cuando la primera se anula, la tasa de reelección
cae drásticamente.
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Figura 7: Tasas promedio de reelección de líderes, con βnoexito = 0. Los colores indican la
tasa de reelección de un líder.

Por último, se prueba a fijar J = {0, 1} y se observa el comportamiento del sistema
en función de los otros dos parámetros βexito , βnoexito. Se comprueba que si la constante
de acoplamiento J se anula, los votos tienden a ser más aleatorios, lo que implica que el
voto medio se situará alrededor del 0 y, por lo tanto, la tasa de reelección es muy baja
para cualquier par de valores de β. Por otro lado, cuando J = 1 valores pequeños de β
implican tasas de reelección más altas.

(a) J = 0 (b) J = 1

Figura 8: Tasas promedio de reelección de líderes, con J = {0, 1}. Los colores indican la
tasa de reelección de un líder.
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Una vez analizado el modelo analíticamente y computacionalmente, se procede a in-
tentar ajustar los parámetros para las tasas de reelección obtenidas en la sección 5.2
para España, que corresponden a una tasa de reelección del 58 %. Utilizando las figuras
obtenidas en esta sección, se ajusta el modelo mediante prueba y error, obteniendo los
siguientes resultados: J = 0.45, βexito = 0.09 y βnoexito = 0.4. Ahora, se dispone de un
modelo físico que refleja el comportamiento de la sociedad española en la decisión de voto.
De esta manera, es posible parametrizar la importancia de cada variable del modelo en
este ámbito sociopolítico y potencialmente compararlo con otros.

32



6. Conclusiones

En este trabajo, se ha realizado un estudio sociofísico de la política en el ámbito espa-
ñol. En primer lugar, se ha comprobado si el campo de estudio era adecuado para aplicar
modelos sociofísicos, se ha descubierto que la dinámica de la transferencia de opinión sigue
patrones universales, que en España se comparten, aunque con ciertas diferencias debido
a las particularidades sociopolíticas y del sistema electoral. Por lo que se ha concluido que
el uso de técnicas sociofísicas está justificado en este ámbito.

Por otro lado, se ha propuesto la hipótesis de que la dinámica electoral era un sistema
con memoria, de manera que para modelizar el comportamiento de los electores era ne-
cesario tener en cuenta los resultados del proceso electoral anterior. Para demostrar esta
hipótesis, se ha planteado un modelo de Markov de 3 estados y se ha calculado el estado
estacionario del sistema. De esta manera, se ha logrado obtener la probabilidad de re-
elección del presidente del gobierno en este estado estacionario, que representa el sistema
cuando el número de elecciones tiende a infinito. Se ha comprobado que las probabilidades
de reelección obtenidas del modelo son estadísticamente relevantes, por tanto, el modelo
es capaz de reflejar el sistema real y eso implica que la hipótesis inicial de que el sistema
tenía memoria no se puede descartar.

Por último, se ha planteado un modelo sociofísico para intentar reproducir esta diná-
mica electoral de manera analítica. Las interacciones entre agentes en el modelo se han
representado mediante un modelo de Ising adaptado, donde el hamiltoniano del sistema
tiene en cuenta la interacción entre los agentes debido a las diferencias de opinión entre
un individuo y sus vecinos. Además, se incluye lo descubierto anteriormente añadiendo
una interacción externa que depende de los resultados electorales previos, añadiendo este
comportamiento con memoria. Se ha estudiado analíticamente el impacto de los distintos
parámetros, encontrando distintos valores críticos. Para terminar, se han realizado dis-
tintas simulaciones, permitiendo ver computacionalmente el comportamiento del sistema
en casos límite. Con esta información, se ha ajustado el modelo para cumplir con los
datos estadísticos reales de las tasas de reelección, con los siguientes valores para cada
parámetro: J = 0.45, βexito = 0.09 y βnoexito = 0.4, esto permite simular un entorno con
dinámicas electorales equivalentes a las observadas en el ámbito español.

Futuras investigaciones

Una vez adquirido este modelo específico, se plantean futuras investigaciones que po-
drían resultar de gran interés tanto en el ámbito académico como en el práctico. En primer
lugar, se sugiere contrastar los resultados obtenidos en España respecto a otros modelos
electorales para examinar cómo las diferencias sociopolíticas y las particularidades de los
sistemas de representación influyen en las dinámicas de votación. Este estudio comparativo
posibilitaría la exploración de patrones comunes y discrepancias según las características
distintivas de cada contexto.

Además se sugiere utilizar el modelo creado para estudiar cómo diversos sucesos socia-
les como crisis económicas, movimientos sociales o modificaciones en la legislación podrían
afectar los resultados electorales al introducir alteraciones externas en el sistema. Estas si-
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mulaciones facilitarían examinar situaciones hipotéticas y valorar la resistencia del sistema
electoral ante tales sucesos.

Finalmente sería interesante ampliar el modelo para abarcar dinámicas temporales más
elaboradas; por ejemplo, incorporando ciclos electivos o variaciones en las normativas elec-
torales del sistema político. De esta manera se podría investigar cómo la transformación
de las preferencias políticas en el transcurso del tiempo - impulsada por factores socio-
culturales o tecnológicos - podría afectar la estabilidad del sistema o dar lugar a nuevos
comportamientos innovadores.

En resumen, este estudio ha evidenciado que las técnicas sociofísicas son un recurso
válido para analizar la dinámica electoral en el contexto español; los hallazgos obtenidos
abren nuevas vías de investigación que podrían enriquecer nuestra comprensión de los
procesos sociopolíticos y su modelado matemático. Estas futuras investigaciones no solo
podrían impulsar desarrollos teóricos en la intersección de la física y las ciencias sociales,
sino también brindar herramientas prácticas para mejorar y fortalecer sistemas electorales
más representativos y resilientes.
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